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Abstract: The Hyperswitch Communication Network (HCN) is a large-scale
parallel computer prototype being developed at JPL and in collaborations with
several large computer companies. These companies are planning on building
commercial versions of the HCN computer. The HCN computer being designed
is a message-passing multiple instruction multiple data (MIMD) computer, and
offers significant advantages in price-performance ratio,
reliability/availability, and manufacturing over traditional uniprocessors and
bus based multiprocessors. The design of the HCN operating system is a
uniquely flexible environment that combines both parallel processing and
distributed processing. This programming paradigm can achieve a balance
among the following competing factors: performance in processing and
communications, user-friendliness, and fault tolerance. The prototype is being
designed to accommodate a maximum of 64 state-of-the-art microprocessors. A
full configuration will provide up to 2.6 GIP, 1.2 GFLOPS, 4 Gbytes of total node
memory, 700 Mbytes/second 1/O rate and 4 Gbytes/second processor-to-
processor communication rate. This communication architecture extends the
application of parallel systems to supercomputer problems that place heavy
demand on the system for high bandwidth, low latency, and non-local
communication. Hence, the classification of the HCN concept as being
distributed supercomputing. This paper describes the HCN system, and reviews
the performance/cost analysis and other competing factors within the system
design.

The research described in this paper was performed by the Center for Space
Microelectronics Technology, Jet Propulsion Laboratory, California Institute
of Technology, and jointly sponsored by SDIO/IST and the United States Air
Force, Electronics Systems Division through an agreement with the National
Aeronautics and Space Administration.

1. Applications: The need to solve more complex problems is
outpacing the ability of the world's fastest computers to solve the required
applications within acceptable time periods. At the same time, even with the
continuing advances in microelectronics technology, it is becoming
increasingly more difficult to design and build powerful computers. The
demand for increasing capability, higher performance and fault-tolerance
are continually being placed on computers. Several application examples are
given below.

1.1 Space Flight Operations: The ground based command and control
operation system has played a crucial role in JPL and NASA's success.
Traditional mainframe computers have been employed for science and
engineering applications in the past, providing centralized processing and
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data management resources for each project. The demand on computation and
data handling capabilities multiplies as the complexity of spacecraft and their
operation grows; the computational demands is also exacerbated when
operations considers the concurrent multiple missions environment. The
addition of more computers appears to be the best solution today and the
present Space Flight Operations Center (SFOC) system is comprised of about one
hundred conventional workstations networked together.

The following Flight Missions: Magellan, Galileo, Ulysses, Mars Observer,
TOPEX, and CRAF/Cassini are expected to be operating together in the next
decade: EOS, Lunar Observer, Rover, and another half dozen missions are
proposed to be supported by JPL. The current Flight Operations network will
eventually become "unsteerable” assuming even a factor of four increase in
physical count. What is needed is a ground data system that will provide for

more accurate and timely data processing that is both informative to the user
and cost effective to the project.

1.2 Consolidated Command Center: Military applications comprises
information management systems (consolidated command center) to support
needs in terms of planning, decision making, and fault diagnosis. As with the
JPL needs, ground data systems are needed to help cope with the increasingly
complex problems in the logistics of supply and support, as well as with
strategic and tactical planning. Although the precise functional and
performance requirements of such a consolidated command center are of
necessity evolving, certain basic, generic command center requirements
include: survivability which places a geographical distribution requirement
on the system; high level of fault tolerance; multi-level security; flexible and
high bandwidth communications and networking; interfaces with a wide
variety of machines; scalability in order to match performance requirements
and dynamic reconfigurability to respond to variable workloads; high
performance database management; supercomputer class floating point
computation speed. Many of these requircments are also needed for the JPL
Flight Operations applications. Therefore, these generic requirements are the
driving force behind the HCN system described herein.

2. SYSTEM OVERVIEW: The HCN computer is a loosely coupled MIMD
system with distributed local memories attached to multiple processor nodes,
see Figure 1. The interconnect topology is a hypercube network used with a
hyperswitch[1] message routing clement in each node. Message passing is the
major communication method among the computer nodes in the HCN computer
shown in Figure 1. The HCN Message-routing method demonstrates a highly
fault-tolerant capability, while providing an adaptive routing hardwarc based
algorithm with very low message latency. With a very low communication
overhead, parallelism is potentially profitable. This is becausc the
programmer sceking maximum performance is strongly tempted to partition a
problem into the finest possible granularity to create the maximum amount of
parallelism. Therefore, in a message-based parallel computer, the
performance of fine granularity computation depends crucially on the rate of
message exchange. Fine granularity is a system which effectively supports
processes transmitting short messages between code blocks that are less than
several hundred instructions in length.

2.1 Hardware: Each node comprises onc or more state-of-the-art Motorola
microprocessors, and is expected to provide from 50 to 300 MIPS per node with
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Figure 1, Hyperswitch Communication Network prototype

comparable floating-point performance. The prototype machine as a whole
will comprise a total of 32-nodes, at least two microprocessors per node.

The system of links, communication, and application processors thus supplies
an homogeneous, MIMD supercomputing resource, while allowing for
expansibility and attachment of special-purpose processors. The partitioning
of the system into communication, application, and special-purpose devices is
reflected in the software: the communication system is completely hidden by
the operating system software which presents a distributed object-oriented
view. Applications run on the application processors and utilize the attached
special-purpose processors in a transparent, fault tolerant fashion. The
class/object view which hides the communication system also hides the
attached devices without limiting their use.

2.2 Software: The class/object paradigm provides for intra-process
(intra-program) communications. Global, named communications links, such
as might be neceded for a distributed DBMS, are casily implemented. The
distributed operating system view is shown in Figure 2 as compared to a
current workstation class networking view. We also expect fault-tolerance
facilities to be supplied through the object system. By refining an object's
simple send method to be an atomic multicast, we set the stage for shadowed
processes virtually transparent to the user.

The programming environment will evolve noticeably in ten years. We see
powerful debugging and monitoring tools developed which provide facilities
equal to or better than those provided by the tools currently available for
developing sequential programs on workstations.

3. Architecture: The architecture of the HCN is shown in Figure 3. This
architecture is based on the new Motorola M88K microprocessor, a custom
message processor and the JPL custom hyperswitch communication chips. The
HCN architecture is designed to support applications that require both fault
tolerance and high-performance. This architecture extends the application of
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parallel computers systems to large-scale problems that place heavy demands
on the communication network for high-bandwidth, low latency, and non-
local communication. The overall performance of systems composed of many
tightly coupled processes, such as data searching, sorting, graphics,
information processing, etc. depends largely on both the efficiency of
communication between nodes and the efficiency of fault recovery. All node
functions support this structure.

NETWORKED
APPLICATION CODES
LIBRARIES, COMPILERS
OPERATING SYSTEM

HARDWARE
{MULTWPROCESSOR)

APPLICATION COOES
LIBRARIES, COMPILERS
HARDWARE
(MULTIPROCESSOR)

DISTRIBUTED

Figure 2, HCN parallel processor operating system with
distributed multicomputer operating system support

31 Computer Node: The node processor structure shown in Figure 3
consists of two MS88K units on one system bus (IMbus). Each unit contains one
M88K microprocessor and four M88K cache and memory management devices.
These devices include high-speed memory caching, two-level demand-paged
memory management, and support for shared-memory multiprocessing. The
M88K is a high-speed reduced instruction set computer (RISC) microprocessor.
One MB88K unit can be configured as the master CPU and the other MB88K unit as
a checker. This master/checker configuration contains comparator circuits
which examine internal and external state of all active output signals. If a
mismatch occurs on any output, then an error signal is asserted, the node
hardware recognizes the fault and the operating system software reorganizes
to ecliminate a faulting node by logically enabling a redundant node. In
addition to using the master/checking mode for fault-tolerant applications,
the two MB88K units can be used as independent microprocessors for increased
performance (shared node memory multiprocessing).

Message processing latency is reduced by directly executing messages with the
custom message processor using special microcode and hardwired logic. The
message processor provide support for macro primitive loading and execution,
message error checking, message transmission, message broadcasting,
process-to-process synchronization, and message recceive buffering. The
message processor is also configured in a master/checker configuration for
fault recognizing and recovery. Also, processor registers are used to save the
message transfer control contents when other communication interrupts

occur. The custom message processor is designed to field the communication
interrupts and handle all the ordinary communication events.
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Figure 3, HCN node processor structure

In early hypercube systems message routing latency was in the hundreds of
microseconds, but with the development of the hyperswitch communication
chips and the message processor, latency has been reduced to a few
microseconds. With a hypercube interconnection network, any two nodes that
are not directly connected by a link must have their message connected by
intervening nodes. But, within a hyperswitch communication network there
is virtually no performance degradation when message are sent from one end
of the network to the other end. The tested hyperswitch chips use an informed
heuristic search algorithm, which can automatically avoid congested or faulty
links based on its previous congested experience. Therefore, a message does
not wait for a busy link because the hyperswitch network tries to route the
message through noncongested or fault-free links. The I/O links are two
200Mbits/s bit serial channels, one for data input and one for data output. One
of the log n I/O node links can be selected as a fiber optic channels for long-
haul communications. Multiple fault detection and recognition is built into the
hyperswitch communication chips. This allows dynamic recovery software to
reorganize around a faulting channel or node to restore normal operation.

4. Operating System: The HCN-based operating system (OS) will be a
balance among the following competing factors: performance in processing
and communications, user-friendliness, and fault tolerance. @ We can make best
use of our resources by adopting existing operating system code wherever
possible, and by building a system that supports modern programming
paradigms. Figure 4 shows the user environment and concurrency support
available from the OS. The primary programming paradigm to be supported is
an object-oriented model, in which each object is resident on some node of the
machine or distributed over several nodes for performance. Since no single
programming paradigm is appropriate for all applications, a second view will
be supported: processes and messages. The processes referred to here are
cither UNIX-style processes or lightweight tasks. While this view is closer to
the view given by the JPL Mark III[2], a principal difference will be a marked
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reduction in the "hypercube" view. The user will be less aware of the cube-
based communications than was the case with the Mark IIL

4.1 Concurrent Object-Oriented Programming: The HCN operating
system supports an object-oriented concurrent programming paradigm.
Concurrent object-oriented programming is a methodology in which the
system to be constructed is modelled as a collection of concurrently executable
program models called objects. This powerful paradigm in which the HCN is to
be written exploits parallelism both in the architecture and application.

4.2 Programming Environment: C++ 1is chosen as the primary
programming paradigm for the HCN because it can serve two purposes: (1) its
compatibility with C makes it a language close to the machine so that all
important aspects of a machine are handled simply and efficiently in a way
that is reasonably obvious to the programmer. For example, the user creates an
object and specifies where the object is to be placed. All subsequent
manipulations of that object are done in the usual C++ fashion with no
reference to the object's location. (2) the object-oriented features in C++ makes
it a language close to the problem to be solved so that the concepts of a solution
can be expressed directly and concisely. C++ provides constructs to express
class/subclass hierarchies, type abstraction and inheritance. Extensions are
added to C++ to support parallel processing, such as remote object creation and
concurrent message passing using futures.
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Figure 4, HCN user environment and concurrency support

4.3 Concurrent Process-Oriented Programming: The process-
oriented programming paradigm is a more traditional way to program an
application on parallel machines --- a set of sequential processes
cooperatively solve a problem by exchanging information via message
passing. It has shown that the process model is a powerful programming
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model for a distributed-memory multiprocessor. Therefore, HCN OS will also
support the process model in addition to the Object-Oriented Model. A Unix-
compatible distributed operating system, such as Mach(3] or Chorus[4] is under

consideration. The advantage for Unix compatibility is that much existing
software can be ported to HCN easily, therefore, the application development
effort will be significantly reduced. Mach is a multiprocessor operating

system kernel developed at Carnegie-Mellon University. In addition to binary
compatibility with Berkeley's UNIX 4.3, it also provides facilities for supporting
shared-memory or distributed-memory multiprocessors, a new robust virtual
memory design and a capability-based interprocess communication facility.
The capability-based design and the virtual memory design in Mach can be
enhanced to support mandatory access control. By supporting both Object-
oriented and Process-oriented programming paradigms with Unix
compatibility, fault tolerance, and multi-level security, the HCN OS is capable
of serving many different types of applications.

4.4 Process Management: Multitasking will be fundamental to the
operation of each node, as well as memory management and memory
protection. This is for several reasons, including performance with an
asynchronous communications system, multi-user time-sharing of the HCN,
and more flexible programming for the user.

The HCN OS process management will be similar to that of Mach. The kemnel
will support the concept of threads (lightweight tasks) which allows the
construction of multi-threaded tasks. Such tasks can contain multiple
execution paths, all of which can be active concurrently. Threads of a single
task can execute concurrently, each in a separate physical processing
element. Threads may be created, terminated, suspended and resumed with HCN
OS primitives that are much faster than corresponding fork/exec 's of UNIX.

4.5 Memory Management: The HCN OS will provide memory
management, including virtual memory, similar to that of Mach. The kernel
performs memory management at a node where physical memory is treated as
a cache for the contents of virtual memory objects. In Mach each virtual
memory object is managed by a pager. Such pagers could be used to allow
memory sharing across a loosely-coupled or distributed configuration.

4.6 Message System: Two HCN OS message management systems will be
supported. One is similar to that of ES-Kit. ES-Kit[5] which is an operating
system kernel developed at MCC to support distributed, object-oriented
execution in extended C++. The other is Express[6] which is a message
management system that provides a portable platform on which parallel
programs and applications can ue built. Therefore, applications built on other
concurrent computers using Express can easily port to the HCN computer. Both
systems will be employed as the bases of the HCN Operating System. Efforts will
be devoted in evaluating the feasibility of adding other parallel constructs,
such as Distributed Objects and Multiple Threads. All communication between
nodes is by messages. Therefore, both systems must provide communication
services without sacrificing performance. Express offers a well understood
programming model and is backwards compatible with existing applications.
Whereas, ES-Kit offers a much more sophisticated development tool and a
strong basis for experimental developments, such as fault-tolerant parallel
extensions.
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4.7 Programming Tools: A C++ source-level debugger aware of tasks and
remote objects, and performance-monitoring tools for visualizing program
behavior will be available. The emphasis will be on graphic tools and a
simulation environment for the debugging of application code. Graphical tools
such as a hierarchical diagram of classes and instances, for example, greatly
increase program reliability and programmer productivity.

4.8 Distributed File System: HCN OS supports transparent remote file
access whether the file resides on a disk attached to a remote HCN node or on a
Workstation connected to the HCN network. The file system and directory
structure is Unix compatible. For example, facilities are provided to
mount/dismount file systems, and for file transfers between different disk
drives.

5. Fault-Tolerance: The HCN is a set of homogeneous processing
clements interconnected by a high bandwidth network. These processing
elements are connected to a heterogeneous set of data sources and sinks,
including: workstations; graphic displays; disks; and special purpose
processors. In order to make the entire HCN a fault-tolerant system, we need to
assure fault-tolerant operation in the following three components:

1. The homogencous processing element has to be fault-tolerant.
2. The communication network has to be fault-tolerant.

3. The interface to the heterogencous external sources or sinks must be
fault-tolerant.

The fault tolerance design of HCN should be able to survive one or more
failures falling into any of the above three categorics. In the prototype effort,
HCN is used as the homogencous processor network. In the following
paragraphs, we will discuss the fault-tolerance design in the HCN with respect
to the above.

1. Each HCN node has built-in self-checking hardware consisting of dual
Motorola 88000 CPUs for error detection, and error detection circuitry for
node memory and system buses. An exception is signalled to the operating
system when an inconsistency is detected by the hardware. The OS then
initializes the damage assessment program and error recovery program (o
identify the type and location of the fault, and resumes the whole system to a
safe state. In a distributed system, a single node failure cannot be isolated
from the rest of the system. Therefore, a global recovery mechanism has to
be employed to synchronize and reconfigure the system. The common
checkpoint/rollback recovery technique has been identified as inadequate
for a message-passing distributed system due to the so-called "domino
effect”. Instead, user processes are duplicated in two different nodes and
processes are synchronized actively by messaging calls. When the primary
process is faulty, the backup process will resume the primary's position
with minimum recovery delay. This fault tolerance capability is
transparent to the user.

2. The Hyperswitch can detect channel errors by two levels of parity check.
The adaptive routing algorithm built into hardware can then bypass faulty
links and route a message through. It can also recover transient errors
occurring in data transmission by automatic retry. Also, self-timing
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hyperswitch channels can determine the data rate locally, no system-wide
clock is needed. However, the Hyperswitch has limited hardware support for
message broadcasting, not to mention atomic broadcasting. Moreover, it does
not search exhaustively all the possible routes, and thus may not be able to
find a route successfully in the presence of faulty links. The HCN operating
system has to perform the following functions to augment the fault
tolerance abilities of the hardware:

— To be able to send point-to-point messages in spite of faulty links or nodes
in the hyperswitch network.

— To be able to tolerate up to (n/2) link faults, where n is the dimension of
the cube. In other words, a point-to-point message can be routed
between any two pairs of nodes if there exists less than or equal to (n/2)
faulty links.

— Should be able to find a feasible minimal path when the hyperswitch fails
to find an optimal route when faulty links exist.

— To be able to broadcast message to the entire cube or to an arbitrary set of
nodes

— The broadcast message must either be received by all the non-faulty nodes
in the recipient group or none of them (i.c., atomic broadcasting)

— To be able to use a fault-tolerant broadcasting algorithm to bypass faulty
nodes and links in building minimal spanning trees.

3.  When an HCN node is connected to an external device via a channel, say, a
VME interface, either the node, the channel, or the external device may
cause single-point failure to the entire system. Therefore, all the three
components have to be protected from failure with redundancy. In
addition, a fault-tolerant interface between the HCN node and the attached
devices/processes has to be built to perform error recovery for the
external device. For a device without self error-checking capability, triple
module redundancy may be adopted and a voting mechanism has to be
included in the interface software/hardware. For a device with self
checking capability, a duplicate device is necessary for backup purpose.
The physical channels between the node and the external device should
also be duplicated to protect the system from single-point failure on the
node that is attached to the external device.

6. Cost/Performance Tradeoffs: With today's microelectronic
devices the cost of fast devices tends to grow faster than the performance
benefit of the increased device speed. Hence, the cost per unit of computing
power tends to be greater for high-end machines than for low-end machines,
although this trend is technology dependent and could change over time. The
relative performances and cost ranges of four classes of commercial
computers{7,8] are plotted in Figure 5. The estimated performance and cost
ranges of the HCN is also shown. As you can see the low-cost technology of the
HCN is an opportunity to create a cost-effective high-performance system by
combining slow-speed microprocessors. As stated in Section 2., the cost
advantage of using low-cost technology is balanced by the degradation in
efficiency that inevitably occurs as the number of processors increases.
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Therefore, Communication efficiency and hardware connectivity are the
major concerns in the choice of a cost-effective message-passing computer
architecture.

To address these concerns, system modeling is used to scientifically explore
cost/performance tradeoffs of the HCN-based system[9]. The basic modeling
approach is part of a design mecthodology that has been called performance
engineering and uses hierarchical modeling with models expressed by
extended directed graphs. High level models are used to evaluate design
tradeoffs which includes applications software and operating systems as well
as communications hardware overheads. The model can be driven either by
synthetic scaled workloads or applications traces.

Some of the design questions being explored with the model include: optimal
mapping of application functions to hypercube nodes with and without system
faults; sensitivity to message/packet length and network topology; operating
systems overhead for various message protocols and data checkpoints; effects
of adaptive routing with high volume traffic and bursty traffic.
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Figure 5, Computer systems cost/performance as a function of trends

7. Conclusion: An important part of this work included establishing a
strategy for how long-lived systems should be designed and constructed. In
particular, one should view the HCN as an ongoing and continuing design --
the HCN is never complete in the sense that newer and better technology
continues to appear, and it must be able to take advantage of that technology.
Furthermore, the users of the HCN systems are also changing and improving
its utilization -- that is, new applications are encountered and necw responscs
to those applications must be devised and implemented. Therefore, as work
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gets underway on the HCN, it is important to be designing the next step. Of
course, the next step is not a complete replacement, but is an evolution of its
fundamental components. By the time several steps of that evolution have
occurred, the system may be quite different from its original form, but better
and more adapted to the problems that it solves.

Given the rapid pace of technology, a design that reaches ten years into the
future can serve best by being flexible -- able to incorporate modification,
extension, and, basically, to evolve. In such flexibility there is strength.
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